School of Chemistry Taught Postgraduate Master’s Programmes

We propose to establish taught postgraduate master’s degrees (TPGM) in Materials Chemistry and Medicinal and Biological Chemistry based on our existing level 11, SCQF masters level, year 4/5 courses supplemented by suitable practical work, a research project and a dissertation.

Outline Structure

180 points in total at level 11

- 80 points lectures
- 40 points research methods, literature survey and project definition exercise
- 60 points research project and dissertation.

Full details of the proposed degrees are given in the accompanying Degree Programme Specification documentation and the CCAMS entries for the required new SCQF, level 11, Research Methods and MSc Project and Dissertation courses.

Resources

The lecture content of each of the degrees will be the ‘core’ courses of the corresponding current integrated masters, MChem, degrees and so there is minimal additional effort associated with the delivery or assessment of the taught component of the new awards other than the volume element.

In the first and second semester, practical work for the degrees will take the form a Research Methods (level 11, 40 credit) course consisting of three, six-week, small group research methods exercises, a literature survey and a project definition exercise. Elements of this will draw upon our established level 10 research methods exercise programme, although there will be some additional effort associated with assessment of the work at level 11 and the supervision of the student for the literature survey and project definition components in preparation for the project work.

Progression to the project element of the award, in May through to mid-September, will be subject to the normal postgraduate examination regulations for progression from postgraduate diploma to the master’s degrees. Hosting the projects constitutes the major demand on our resources in mounting these degrees, however since the work is at a time of year distinct from BSc (Hons) or integrated master’s project work and directed toward the interests of the major research groupings within the school, there should be little difficulty in providing project places to meet the likely demand.

The governance of these TPGM courses will be by the QA/QE committees and Board of Examiners normally associated with the ‘undergraduate’ teaching organisation in line with the reorganisation within College to classify programmes as Taught or Research rather than under- or post- graduate.

Fees

The current fees for taught Masters are £4350 (£13,200 overseas). An additional ‘bench fee’ of £1000 for the project element would also be charged in line with other taught masters courses with a laboratory based project.
Eligibility

The degrees will be open to candidates with a 2:1 Honours degree or equivalent in Chemistry or a closely related discipline. Graduates from any Edinburgh University Chemistry degree programme will not be eligible to apply.

Timeline for Introduction

Feb 2008; approved by Chemistry BofS
Feb 2008: entry in 2009 postgraduate prospectus (provisional-subject to approval)
Feb 2008: approved by Chemistry Planning and Resources Committee
Mar 2008: approval by CUGSC
Mar 2008: development of chemistry web pages directed towards international recruitment to these courses for Sept 2008
Sept 2008: first potential student.
May 2009: first project placements

G McDougall
March 2008
Medicinal and Biological Chemistry (MSc/Dip)

Degree Type: Postgraduate Taught Masters/Diploma
POS Code: to be allocated

<table>
<thead>
<tr>
<th>NYT</th>
<th>Course</th>
<th>S</th>
<th>L</th>
<th>CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Synthetic Organic Chemistry Level 11</td>
<td>L</td>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>Chemical Biology Level 11</td>
<td>L</td>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>Medicinal Chemistry Level 11</td>
<td>L</td>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>Biophysical Chemistry Level 11</td>
<td>L</td>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>Research Methods</td>
<td>L</td>
<td>11</td>
<td>40</td>
</tr>
<tr>
<td>10</td>
<td>MSc Project and Dissertation (60 credits)*</td>
<td>L</td>
<td>11</td>
<td>60</td>
</tr>
</tbody>
</table>

*in a relevant research area as determined in consultation with the Course Organiser

Materials Chemistry (MSc/Dip)

Degree Type: Postgraduate Taught Masters/Diploma
POS Code: to be allocated

<table>
<thead>
<tr>
<th>NYT</th>
<th>Course</th>
<th>S</th>
<th>L</th>
<th>CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Properties and Reactions of Matter Level 11</td>
<td>L</td>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>Concepts and Methods in Materials Chemistry Level 11</td>
<td>L</td>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>Chemistry of Functional Materials Level 11</td>
<td>L</td>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>Structural Chemistry Level 11</td>
<td>L</td>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>Research Methods</td>
<td>L</td>
<td>11</td>
<td>40</td>
</tr>
<tr>
<td>10</td>
<td>MSc Project and Dissertation (60 credits)*</td>
<td>L</td>
<td>11</td>
<td>60</td>
</tr>
</tbody>
</table>

*in a relevant research area as determined in consultation with the Course Organiser
Programme Specification for Taught Master’s in Medicinal and Biological Chemistry

1) **Awarding Institution:** University of Edinburgh

2) **Teaching Institution:** University of Edinburgh

3) **Programmes recognised/accredited by:** This new degree will be submitted to the Royal Society of Chemistry for accreditation. The RSC currently recognises existing master’s degrees in Chemistry at Edinburgh University and the expectation is that this degree will satisfy the academic requirements for Member of the Royal Society of Chemistry and Chartered Chemist designation (MRSC, CChem).

4) **Final Awards:** MSc in Medicinal and Biological Chemistry

5) **Programme Titles:** Medicinal and Biological Chemistry (MSc)

6) **UCAS Codes:** n/a
 Relevant QAA Subject Benchmarking Group(s): Chemistry

7) **Postholder with overall responsibility for QA:** Dr D Reed

8) **Date of production/revision:** 5/3/2008

9) **Educational Aims of the Programmes:**

 Medicinal and Biological Chemistry, like Chemistry, requires a thorough understanding of molecules, their structures, properties and synthesis, but it also demands the chemical understanding of the nature of biological structures, from macromolecules to cells, the design of pharmaceutical materials in the laboratory and their function in clinical settings. The knowledge and skills acquired in the course will leave graduates well equipped to compete for positions related to ‘drug discovery’ in chemical, pharmaceutical or biotechnological companies.

 The MSc degree course in Medicinal and Biological Chemistry consists of taught, advanced level, lecture courses, training in aspects of synthesis and analysis related to medicinal and biological chemistry research and an opportunity to conduct high level research within one of the groups in the School of Chemistry.

 The lecture courses associated with each of the degrees are outlined below.

Synthetic Organic Chemistry Contemporary synthetic methods in organic chemistry, and their application to complex molecule synthesis including individual lecture courses on: Reagents for

1 The information contained in this Programme Specification should be used as a guide to the content of a degree programme and should not be interpreted as a contract.

2 The Programme Specification has been referenced to the Chemistry Benchmark statement and to the Scottish Credit and Qualifications Framework.

Chemical Biology Application of organic chemistry methods, theory and mechanism to biological systems and an introduction to methods used to manipulate and study cellular processes including individual lecture courses on: Biocatalysis in Synthesis, Molecular Enzymology, Carbohydrates, Molecular Engineering, and Bioinorganic Chemistry

Medicinal Chemistry A lecture course covering instruction in both the theory and application of medicinal chemistry including individual lectures courses on: Metals in Medicine, Nucleic Acids, Medicinal Chemistry and Industrial Medicinal Chemistry

Biophysical Chemistry Instruction in both the theory and application of specific techniques in biophysical chemistry including individual lectures courses on: Structures of Biological Macromolecules, Biophotonics, Macromolecules in Motion, Macromolecular Structure Determination, Computational Biology and Bioinformatics

In addition to the lecture components, students for the degree conduct a course in **Research Methods and a Research Project and Dissertation**. Together, these practical elements constitute 100 of the 180 credits required for the award of the degree. The Research Methods course includes three, six-week mini-research projects performed in small teams, covering a range of skills and specialist techniques related to medicinal and biological chemistry, together with a literature survey and written report defining the scope of the subsequent individual research project work. The research project is tailored to the student's area of interest and will develop conceptual and analytical skills specific to that area, leading to a dissertation describing original research.

Expert knowledge in the field of study is acquired largely from the lecture courses, while the research methods training and project work provide the opportunity to apply that knowledge and further develop intellectual and practical skills through independent scientific research.

The lecture components are assessed via formal 'unseen' examinations in May. Written communication, report writing and IT skills are developed via a series of written reports associated with the research methods training, a literature survey, production of a project definition/plan and the research project dissertation. Oral presentation skills are acquired via formal presentations of your work to other team members during the project element of the degree. Practical skills and an awareness of safe laboratory practice and risk-assessment are core elements of the research methods training and the research project.

10) **Programme Outcomes:**

The MSc programmes are essentially an advanced level introduction to an important area of research in modern chemistry and training for both future research in that area and more general high level professional skills development. Students successfully completing the course should have enhanced their overall skill-set as detailed below.

(a) **Knowledge and Understanding**

be able to demonstrate a depth of comprehension and critique in the core elements of their subject area as detailed through their lecture courses and their private study associated with the research project work
(b) Intellectual skills
conduct critical analysis and management of data; judge the relationship between theory
and methodology, and the influence of one upon the other; assess appropriate methods of
data collection/analysis to address the research question; assess the relevance of previous
studies; exercise critical thinking.

(c) Practical/subject-specific/practical skills
design and manage progress in a research project; show well developed written,
numerical, and analytical skills; demonstrate high professional standards in the
production of scientific reports.

(d) Transferable skills
be competent in written and oral delivery and dissemination of research findings; have
sound interpersonal and communication skills; computing proficiency; organisation
skills.

11) Programme Structure and Features:

The figures in parenthesis following the course names in each of the outline degree programmes
below are the Scottish Credit and Qualifications Framework (SCQF) level and credit weighting.
Further information on the SCQF can be found at http://www.scqf.org.uk/.

Medicinal and Biological Chemistry (MSc)

Research Methods (11,40), Synthetic Organic Chemistry (11,20), Chemical Biology (11,20),
Medicinal Chemistry (11,20), Biophysical Chemistry (11,20), MSc Project and Dissertation
(11,60)

Entry requirements:

Applicants should have a 2.1 university honours degree or its equivalent in chemistry or a closely
related discipline.

Graduates from any Edinburgh University Chemistry degree programme may only register for
this degree with the approval of the Head of School.

Progression:

The taught courses and research methods elements of the award are completed during semesters 1
and 2 (Sept – May) and successful completion of these elements of the course satisfy the
requirements for the award of a diploma. Progression to the MSc Project and Dissertation element
of the degrees is subject to satisfying the requirements for progression set out in the University
Examinations Regulations at http://www.aaps.ed.ac.uk/regulations. This is normally requires
passes in at least 80 credits at grade C or above in each of the separate elements of the degree and
award of an aggregate pass at grade C for the 120 credits of study examined in May.

12) Other items:

Teaching in the School of Chemistry is carried out in a highly active research environment which
has strong connections with the chemical and pharmaceutical industries. The MSc Course
described here include extensive experimental work carried out in modern laboratories. The high level of research activity in the 5A rated research school enables us to offer project work at the cutting edge of the subject across virtually all major areas of Chemistry. Excellent IT facilities are provided throughout the university. Advice and support, both academic and in all areas of student life, is available via Directors of Studies (DoS). The latter are staff members in the School of Chemistry who each look after the interests of a group of students. Each student is attached to a particular DoS, and may see him/her on a regular basis for advice about their course and as a first point of contact in relation to any problems which may arise.
7) **Awarding Institution:** University of Edinburgh

8) **Teaching Institution:** University of Edinburgh

9) **Programmes recognised/accredited by:** This new degree programme will be submitted to the Royal Society of Chemistry for accreditation. The RSC currently recognises existing master’s degrees in Chemistry at Edinburgh University and the expectation is that this degree will satisfy the academic requirements for Member of the Royal Society of Chemistry and Chartered Chemist designation (MRSC, CChem).

10) **Final Awards:** MSc in Materials Chemistry

11) **Programme Titles:** Materials Chemistry (MSc)

12) **UCAS Codes:** n/a

 Relevant QAA Subject Benchmarking Group(s): Chemistry

7) **Postholder with overall responsibility for QA:** Dr D Reed

8) **Date of production/revision:** 5/3/2008

9) **Educational Aims of the Programmes:**

 Materials Chemistry has emerged as an important sub-discipline within Chemistry. It cross-cuts the traditional Organic/Inorganic/Physical boundaries of Chemistry and overlaps many disciplines from Engineering to the Biosciences. Materials chemists now have a leading role in areas such as microelectronics, polymer science, catalysis and nanotechnology. They also make an important contribution to areas of more traditional chemistry such as the pharmaceutical sector where understanding the ‘physical properties’ of intermediates and products is now recognised as essential in optimising the synthesis and properties of pharmaceutically active ingredients in medicines.

 The MSc degree course in materials chemistry consists of taught, advanced level, lecture courses, training in aspects of synthesis and analysis related to materials chemistry research and an opportunity to conduct high level research within one of the groups in the School of Chemistry.

 The lecture courses associated with each of the degrees are outlined below.

3 The information contained in this Programme Specification should be used as a guide to the content of a degree programme and should not be interpreted as a contract.

4 The Programme Specification has been referenced to the Chemistry Benchmark statement and to the Scottish Credit and Qualifications Framework.
Properties and Reactions of Matter Key areas of advanced physical chemistry including advanced treatment of the structure and chemistry of solids, surfaces, interfaces and gas-phase atoms, ions and molecules including individual lectures courses on: Electrochemistry, Colloids, Solid State Chemistry, Surface Chemistry and Reaction Dynamics, Ions and Excited States.

Chemistry of Functional Materials The design, synthesis, properties and applications of a wide range of functional materials. Particular emphasis is given to electronic materials (conductors, semiconductors and superconductors), magnetic materials, meso- and microporous solids and polymers including individual courses on: The Electronic Properties of Solids, Magnetic Materials, Microporous and Mesoporous Materials and Organic Polymer Chemistry.

Structural Chemistry Techniques applied to the elucidation of molecular structure. As well as a description of the theory and practice associated with individual structural methods, the advantages of combining information from several techniques are discussed with reference to case studies, including individual lecture courses on: Advanced Spectroscopic and Computational Methods (including resonance spectroscopy, EXAFS, and ab initio quantum calculations), Diffraction Methods (electron diffraction of gases and X-ray crystallography) and Laser Spectroscopy.

Concepts and Methods in Materials Chemistry Preparation, characterisation and application of various classes of inorganic and organometallic compounds, including individual lecture courses on: Synthesis of Inorganic Compounds, Supramolecular Chemistry, Lanthanides and Actinides, Sensors, Microscopy and Imaging

In addition to the lecture components, students conduct a course in Research Methods and a Research Project and Dissertation. Together, these practical elements constitute 100 of the 180 credits required for the award of the degree. The Research Methods course includes three, six-week mini-research projects performed in small teams, covering a range of skills and specialist techniques related to materials chemistry, together with a literature survey and written report defining the scope of the subsequent individual research project work. The Research Project is tailored to the student's area of interest and will develop conceptual and analytical skills specific to that area, leading to a dissertation describing original research.

Expert knowledge in the field of study is acquired largely from the lecture courses, while the research methods training and project work provide the opportunity to apply that knowledge and further develop intellectual and practical skills through independent scientific research.

The lecture components are assessed via formal 'unseen' examinations in May. Written communication, report writing and IT skills are developed via a series of written reports associated with the research methods training, a literature survey, production of a project definition/plan and the research project dissertation. Oral presentation skills are acquired via formal presentations of your work to other team members during the project element of the degree. Practical skills and an awareness of safe laboratory practice and risk-assessment are core elements of the research methods training and the research project.

10) Programme Outcomes:

The MSc programme is essentially an advanced level introduction to an important area of research in modern chemistry and training for both future research in that area and more general high level professional skills development. Students successfully completing the course should have enhanced their overall skill-set as detailed below.
(a) **Knowledge and Understanding**
be able to demonstrate a depth of comprehension and critique in the core elements of their subject area as detailed through their lecture courses and their private study associated with the research project work

(b) **Intellectual skills**
conduct critical analysis and management of data; judge the relationship between theory and methodology, and the influence of one upon the other; assess appropriate methods of data collection/analysis to address the research question; assess the relevance of previous studies; exercise critical thinking.

(c) **Practical /subject-specific/practical skills**
design and manage progress in a research project; show well developed written, numerical, and analytical skills; demonstrate high professional standards in the production of scientific reports.

(d) **Transferable skills**
be competent in written and oral delivery and dissemination of research findings; have sound interpersonal and communication skills; computing proficiency; organisation skills.

11) **Programme Structure and Features:**

The figures in parenthesis following the course names in each of the outline degree programmes below are the Scottish Credit and Qualifications Framework (SCQF) level and credit weighting. Further information on the SCQF can be found at http://www.scqf.org.uk/.

Materials Chemistry (MSc)

Research Methods (11,40), Properties and Reactions of Matter (11,20), Chemistry of Functional Materials (11,20), Structural Chemistry (11,20), Concepts and Methods in Materials Chemistry (11,20), MSc Project and Dissertation (11,60).

Entry requirements:

Applicants should have a 2.1 university honours degree or its equivalent in chemistry or a closely related discipline.

Graduates from any Edinburgh University Chemistry degree programme may only register for this degree with the approval of the Head of School.

Progression:

The taught courses and research methods elements of the award are completed during semesters 1 and 2 (Sept – May) and successful completion of these elements of the course satisfy the requirements for the award of a diploma. Progression to the MSc Project and Dissertation element of the degrees is subject to satisfying the requirements for progression set out in the University Examinations Regulations at http://www.aaps.ed.ac.uk/regulations. This is normally requires passes in at least 80 credits at grade C or above in each of the separate elements of the degree and award of an aggregate pass at grade C for the 120 credits of study examined in May.
12) **Other items:**

Teaching in the School of Chemistry is carried out in a highly active research environment which has strong connections with the chemical and pharmaceutical industries. The MSc Course described here includes extensive experimental work carried out in modern laboratories. The high level of research activity in the 5A rated research school enables us to offer project work at the cutting edge of the subject across virtually all major areas of Chemistry. Excellent IT facilities are provided throughout the university. Advice and support, both academic and in all areas of student life, is available *via* Directors of Studies (DoS). The latter are staff members in the School of Chemistry who each look after the interests of a group of students. Each student is attached to a particular DoS, and may see him/her on a regular basis for advice about their course and as a first point of contact in relation to any problems which may arise.
Course Code: P****

Course Name: Research Methods

'Owning' School: School of Chemistry
College: College of Science and Engineering

School Acronym Prefix: CHE
Normal Year Taken: P - Postgraduate
School Acronym Suffix: MST-RM
School Acronym for Course: CHE-P-MST-RM
Session Course Operational with effect from: 2008/2009

Course Level: Postgraduate

Honours: No

Available for Visiting Students?: No

Credit Points: 40

Credit Scheme: Scottish Credit and Qualifications Framework
Credit Level: 11 - SCQF Level 11

'Home' Subject Area: Code Description Sched School Code
3 Chemistry L Chemistry

Course Organiser: ***** Dr David Dryden

Course Secretary: ***** Miss Karen Harris

Pre-requisite Requirements: A 2.1 university honours degree or its equivalent in chemistry or a closely related discipline or with the permission of the Head of School.

Co-requisite Requirements: This course may only be taken as part of a taught postgraduate masters’ degree in Materials Chemistry or Medicinal and Biological Chemistry.

Prohibited Combination Requirements: Graduates from Edinburgh University BSc (Hons) or MChem (Hons) degrees may only take this course with the approval of the Head of School.

Short Description: The course includes three, six week mini-research projects performed in small teams, covering a range of skills and specialist techniques related to Medicinal and Biological Chemistry or Materials Chemistry, as appropriate,
together with a literature survey and written report defining the scope of the subsequent individual research project work.

Summary of Intended Learning Outcomes

At the end of this course students will be able to:
- search the chemical literature on a given topic, and summarise the results of the search in written form to a professional standard
- execute a defined project of research, working as a member of a team, practising in ways which show a clear awareness of his/her own and others’ roles and responsibilities
- carry out research effectively under guidance
- identify and define the principal aims, methods and results of a research project
- critically analyse and interpret the results of a research project, drawing and defending a set of conclusions
- present, at a professional level, the results of a research project in common scientific formats (written paper, oral presentation or poster presentation)
- use computer software to enhance the communication of research or the results of a literature survey
- assess the safety of chemical research in the research laboratory not only in terms of personal safety but also with respect to the safety of others in the laboratory and in the wider environment
- plan and present a coherent proposal for the investigation of a new area of research

Default Course Mode of Study

CA - Classes and Assessment (excluding centrally arranged examination)

Default Delivery Period

Y - Full Year (Blocks 1-4)

Class Sessions

Components of Assessment

Written reports on each of three six week mini-research projects, a literature survey and a written report defining the scope of the subsequent individual research project work.

Month Assessment Result Due (1st Diet)

May

Month Assessment Result Due (2nd Diet)

n/a

Convener of BoE

T0573 Prof David Rankin

Common Marking Scheme

VERS2 - Version 2 (excl MBChB and BVM&S)

Included in Teaching Load Calculations?

Yes

Teaching Load Split

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject Unit</th>
<th>Portion of Credits</th>
<th>JACS Subject Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU240</td>
<td>School of Chemistry</td>
<td>40</td>
<td>F100 Chemistry</td>
</tr>
</tbody>
</table>
Course Code: P****

Course Name: MSc Project and Dissertation (60 credits)

'Owning' School: School of Chemistry
College: College of Science and Engineering

School Acronym Prefix: CHE
Normal Year Taken: P - Postgraduate
School Acronym Suffix: MST60Dis
School Acronym for Course: CHE-P-MST60Dis
Session Course Operational with effect from: 2008/2009

Course Level: Postgraduate
Honours: No
Available for Visiting Students?: No
Credit Points: 60
Credit Scheme: Scottish Credit and Qualifications Framework
Credit Level: 11 - SCQF Level 11

'Home' Subject Area:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Chemistry</td>
</tr>
</tbody>
</table>

Course Organiser: ***** Dr Philip Bailey
Course Secretary: ***** Miss Karen Harris

Pre-requisite Requirements: Successful completion of 120 credits in the appropriate level 11 courses for the degree programme with a weighted average at or above Grade C, or with the permission of the Head of School.

Co-requisite Requirements: This course may only be taken as part of a taught postgraduate masters degree in Materials Chemistry or Medicinal and Biological Chemistry.

Prohibited Combination Requirements: Graduates from Edinburgh University BSc (Hons) or MChem/MChemPhys (Hons) degree programmes may only take this course with the permission of the Head of School.

Short Description: A research project tailored to the student's area of interest which will
develop conceptual and analytical skills specific to that area, leading to a dissertation describing original research.

Summary of Intended Learning Outcomes

Knowledge & understanding
- The course is essentially a training exercise for research and professional skills development but students will be expected to demonstrate a depth of comprehension and critique in the core elements of the subject area.
- Intellectual skills
 - critical analysis and management of data
 - judging the relationship between theory and methodology, and the influence of one upon the other
 - assessment of the appropriate methods of data collection/analysis to address the research question
 - assessment of relevance of previous studies
 - critical thinking.

Intellectual skills
- critical thinking.
- Professional/subject-specific/practical skills
 - research design and management
 - written, numerical, and analytical skills
 - production of scientific reports.

Transferable skills
- written, visual and oral delivery and dissemination of research findings
- interpersonal and communication skills
- computing proficiency
- organisation skills.

Default Course Mode of Study
CA - Classes and Assessment (excluding centrally arranged examination)

Default Delivery Period
Y - Full Year (Blocks 1-4)

Class Sessions

Components of Assessment
Assessment by dissertation according to the University of Edinburgh Postgraduate Assessment Regulations, http://www.aaps.ed.ac.uk/regulations/

Month Assessment Result Due (1st Diet)
Sept

Month Assessment Result Due (2nd Diet)
n/a

Convener of BoE
T0573 Prof David Rankin

Common Marking Scheme
VERS2 - Version 2 (excl MBChB and BVM&S)

Included in Teaching Load Calculations?
Yes

Teaching Load Split

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject Unit</th>
<th>Portion of Credits</th>
<th>JACS Subject Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU240</td>
<td>School of Chemistry</td>
<td>60</td>
<td>F100 Chemistry</td>
</tr>
</tbody>
</table>